# **Training Content**

# Dynamic Modelling with Modelica and FMI DAY 1

| V | ODULE 1: Dynamic Modelling Approach in <i>PowerFactory</i>                                                            |       |
|---|-----------------------------------------------------------------------------------------------------------------------|-------|
|   | Dynamic Modelling Approach in <i>PowerFactory</i>                                                                     | 1/2 h |
|   | Dynamic systems modelling for power systems analysis;                                                                 |       |
|   | Model Specifications/Requirements of User-Defined Models (UDM);                                                       |       |
|   | High-level Control System Representation of UDMs;                                                                     |       |
|   | Time-continuous and time-discrete systems;                                                                            |       |
|   | RMS- and EMT-domain power system simulations.                                                                         |       |
|   | Exercise: Dynamic Modelling Approach                                                                                  | 1/2 h |
|   | Identify and familiarise with dynamic controls and connection patterns associated to power system equipment elements. |       |
|   | Dynamic Modelling Handling                                                                                            | 1/4 h |
|   | Model type/element handling. Identification of various dynamic models.                                                |       |
|   | Exercise: Include Dynamic Models in a Network                                                                         | 1/4 h |
|   | Instantiation of dynamic models based on existing types.                                                              |       |
| С | offee break                                                                                                           |       |
|   | Dynamic Modelling Concepts                                                                                            | 1/2 h |
|   | Interpret and visualise a functional block diagram. Identify the transfer function in a block diagram.                |       |
|   | Exercise: Interpret a Block Diagram                                                                                   | 1/4 h |
|   | Investigate a block diagram;                                                                                          |       |
|   | Run a simulation and plot model signals.                                                                              |       |
| V | ODULE 2: Introduction to Modelica and Graphical Modelling                                                             |       |
|   |                                                                                                                       |       |

**Introduction to Modelica and Graphical Modelling** 

Overview of the Modelica Language and the Modelica Language Specification.

3/4 h



|     | Exercise: Develop further controls for an IBR converter  Create, debug and parameterise a control system for a converter base  Operating with array signals in Modelica models and in the Composite                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Coffee break                                                                                                                                                                                                                                                                                        |
| 9   | Exercise (continued): Develop further controls for an IBR constraints of the developed model Debugging/analysis of model behaviour for various operation scenarios Dynamic simulation: controller response and analysis;  Creating a complete power equipment simulation model by means of a plate. |
| N   | Q&A session                                                                                                                                                                                                                                                                                         |
| F20 | Lunch break                                                                                                                                                                                                                                                                                         |

# Introduction to the Modelica and Graphical Modelling

3/4 h

3/4 h

Graphical and scripted modelling environment for Modelica models within PowerFactory.

# Exercise: Development of a current controller for an IBR converter

Create, debug and parameterise a simple controller model.

#### Coffee break

# Exercise: Development of a current controller for an IBR converter

1 1/2 h

Steady state operation: setting initial conditions of the developed model;

Dynamic simulation: controller response and analysis;

Run simulations and plot model signals.

#### **Q&A** session

# DAY 2

## **MODULE 2: Development and integration of time-discrete Modelica models**

# Model development: workflow and tools for creation of complex UDMs

Model structure: Type Instances/Submodels, algorithms, parameterisation, initialisation;

Model flexibility: data types, scalar/array variables, conditional components.

 $1/_{2} h$ 

 $1^{1/2} h$ 

1 h

ed generator;

Model Frame.

#### onverter

a general tem-

## Exercise (continued): Develop further controls for an IBR converter

Steady state operation: setting initial conditions of the developed model;

Debugging/analysis of model behaviour for various operation scenarios;

Dynamic simulation: controller response and analysis;

Creating a complete power equipment simulation model by means of a general template.

#### Coffee break

#### **MODULE 3: The Functional Mock-up Interface (FMI)**

## FMI as a comprehensive solution for model exchange in power systems

Vendor-independent, tool-independent model interfacing for simulation of power system components;

FMI as a common standard for exchanging dynamic models between OEMs and Utility operators. Tools supporting FMI;

Functional Mock-up Units (FMUs): structure, specifications, data protection and cross-platform compliancy;

FMI Import: Integration of FMUs within *PowerFactory*;

FMI Export: Exporting *PowerFactory* Modelica models as FMUs.

# Exercise: Integration into *PowerFactory* of an FMU-based controller for PE converters

Set-up and configuration of the FMU (FMU Import);

Troubleshooting cases, simulation settings and compatibility requirements.

#### **Exercise: Export of a Modelica converter control model using FMI**

Set-up and configuration of the Modelica model for export purposes;

FMU export.

#### Q&A session



 $1^{1/2} h$ 

3/4 h

 $1/_{2} h$ 

 $1/_4 h$ 

# **Time Schedule (Central European Time)**

| Full-Day                | Time  |
|-------------------------|-------|
| First 90 minutes block  | 9:00  |
| Coffee break            | 10:30 |
| Second 90 minutes block | 10:45 |
| Q&A session             | 12:15 |
| Lunch break             | 12:30 |
| Third 90 minutes block  | 13:30 |
| Coffee break            | 15:00 |
| Fourth 90 minutes block | 15:15 |
| Q&A session             | 16:45 |
| End of the training day | 17:00 |

