Training Content

Power System Stability

DAY 1

MODULE 1: Introduction to Power System Stability

Presentation: Introduction and Basic Concepts

Fundamentals of power system stability. Classification according to IEEE: rotor angle, voltage and frequency stability. Synchronous machine model.

MODULE 2: Transient Stability Analysis

Presentation: Rotor Angle Stability - Transient Stability

Fundamentals of transient stability. Equal Area Criterion. Methods for improving transient stability problems.

Coffee break

Exercise: Transient Stability in a SMIB

Studies in a Single-Machine-Infinite-Bus. Critical clearing time calculation. Visualisation and analysis of results. Effect of changing the initial point of operation.

Q&A session

DAY 2

Exercise: Transient Stability in a Multi-Machine Network

Critical clearing time calculation using a DPL script. Effect of the inertia and the impedance of the system on the transient stability problems. Calculation of the static and dynamic transfer limits.

Coffee break

MODULE 3: Oscillatory Stability (Small Signal) Analysis

Presentation: Rotor Angle Stability - Oscillatory Stability

Description of the linearisation methods. Oscillatory stability in time and frequency domain analysis. Modal analysis and eigenvalue plot. Methods to improve small signal stability.

Q&A session

³/4 h

³/4 h

1¹/₂h

1¹/₂ h

1 ¹/₂ h

Exercise: Oscillatory Stability in a SMIB

Identification of the local mode of a single machine connected to an infinite bus. Analysis done in time and frequency-domain. Impact of the AVR and PSS.

Coffee break

Exercise: Oscillatory Stability in a Multi-Machine Network

Identification of critical oscillation modes in a multi-machine network using modal analysis. Evaluation of the type of oscillation (local, inter-area). Methods to efficiently increase the damping. Impact of different network configurations on the oscillation modes.

Q&A session

DAY 4

MODULE 4: Voltage Stability Analysis

Presentation: Voltage Stability

Fundamentals. Causes and contributing factors in voltage stability problems. Classification of the voltage stability and tools used in every case: steady state and dynamic.

Exercise: Steady State Voltage Stability. Part 1

Calculation of busbars sensitivities, PV curves considering contingencies, effect of modifying the load and replacing conventional generation by renewable generation and a HVDC link.

Coffee break

Exercise: Steady State Voltage Stability. Part 2

QV curves considering contingencies and effect of modifying the load.

Exercise: Dynamic Voltage Stability

Study of voltage stability in the time domain analysis, RMS simulation. Effect of the load modelling and power electronics, motors contribution and AVR dynamic response.

Q&A session

1¹/₂ h

1¹/₂h

³/4 h

³/4 h

¹/2 h

1 h

DAY 5

MODULE 5: Frequency Stability Analysis

Presentation: Frequency Stability

Fundamentals. Definition of the different stages of the frequency stability analysis and factors contributing in each stage: inertia, regulation actions and primary reserve, under-frequency load shedding.

Coffee break

Exercise: Frequency Stability in a Multi-Machine Network

Frequency stability after generators outages. Effect of primary control, load modelling, replacement of conventional generation by renewable generation, a HVDC link and a Battery Energy Storage System, areas separation and load shedding. Comparison between different methods to improve frequency stability.

Q&A session

Time Schedule (Central European Time)

	Time
First 90 minutes block	9:00
Coffee break	10:30
Second 90 minutes block	10:45
Q&A session	12:15
End of the training day	12:30

DIgSILENT GmbH Heinrich-Hertz-Str. 9 72810 Gomaringen Germany T +49 7072 9186-0 F +49 7072 9168-88 mail@digsilent.de

www.digsilent.de

1 ¹/₂ h

1 ¹/₂ h