Training Content

Power Transmission with HVDC

DAY 1

MODULE 1: HVDC-LCC - Fundamentals and steady state operation

Line commutated converters - Overview and principle of operation

 $1^{1/2} h$

Basics of power electronics and line-commutated converters (LCCs).

LCC operation principles. LCC technologies for HVDC.

Coffee break

Exercises: Analysis of six-pulse thyristor bridge using *PowerFactory*

 $1^{1/2} h$

Introduction to the thyristor-based rectifier model, effect of thyristor gate controls load flow analysis.

Q&A session

Lunch break

Steady-state analysis of HVDC-LCC

1 1/2 h

HVDC configurations and components.

Steady-state behaviour, ideal and real commutation, selection of commutation reactance

Reactive power demand and compensation.

HVDC-LCC harmonics and harmonic cancellation.

Coffee break

Exercise: Steady-state model of HVDC-LCC in *PowerFactory*

 $1^{1/2} h$

Implementation of an HVDC-LCC model, power flow setpoints, load flow analysis, reactive power compensation, functions for power flow optimisation in a transmission network.

Q&A session

DAY 2

MODULE 2: HVDC-LCC – Dynamic Simulation

DC-Link Controls and Dynamics

1 1/2 h

Control schemes for rectifiers and inverters. Implementation in *PowerFactory*, firing angle and extinction angle control.

Coffee break

Exercise: Power System Analysis

1 1/2 h

DC link power control and re-dispatch, response to AC-system faults.

Q&A session

Lunch break

Exercise: Power System Analysis (continued)

 $3/_{4} h$

DC link power control and re-dispatch, response to AC-system faults.

HVDC LCC - Interactions with AC Systems

³/₄ h

AC System Strength, Steady-state stability, Dynamic Stability, Screening and Analysis methods for Sub-Synchronous Oscillations (SSO)

Coffee break

MODULE 3: HVDC-VSC – Steady-state Analysis

Introduction to VSC/MMC

1 1/2 h

Voltage-sourced converter (VSC), modular multi-level converter (MMC), MMC with half-bridge or full-bridge submodules, point-to-point HVDC links, multi-terminal HVDC systems, operation principles, applications, steady-state control strategies.

Q&A session

DAY 3

HVDC VSC/MMC - Models in PowerFactory

 $3/_{4} h$

Built-in components for HVDC VSC/MMC. Global library template models: DIgSILEN-T/Manufacturer specific. Available variants for different configurations and applications.

Exercise: Steady-state studies

 $^{3}/_{4} h$

Implementation of MMC-HVDC links into AC network models, application: embedded link in 50 Hz grid; load flow analysis, different control strategies.

Coffee break

Implementation of MMC-HVDC links into AC network models, application: embe	³ / ₄ h
link in 50 Hz grid; load flow analysis, different control strategies.	edded
MODULE 4: HVDC-VSC – Dynamic Analysis	
Dynamic behaviour (I)	³ / ₄ h
Dynamic control strategies (control for islanded and non-islanded operation), level controls.	upper
Lunch break	
Dynamic behaviour (II)	³ / ₄ h
Lower level controls, modulation techniques, protection schemes (power setpoint tion, DC chopper, converter blocking), behaviour during network faults.	adap-
Exercise: Dynamic behaviour	³ / ₄ h
HVDC link to offshore wind park: dynamics under normal operating condition sponse to network disturbances and DC overvoltage mitigation.	is, re-
Coffee break	
Exercise: Dynamic behaviour (continued)	1 ¹ / ₂ h
Dynamics under normal operating conditions, response to network disturbances DC overvoltage mitigation in offshore HVDC links.	; ,
Q&A session	
DAY 4 (half-day)	
DAY 4 (half-day) Exercise: Power system analysis	1 ¹ /2 h
	1 ¹ /2 h
Exercise: Power system analysis	1 ¹ /2 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems.	1 ¹ / ₂ h ³ / ₄ h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break	
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link	
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis.	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis.	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis. Power quality of HVDC VSC/MMC	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis. Power quality of HVDC VSC/MMC	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis. Power quality of HVDC VSC/MMC	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis. Power quality of HVDC VSC/MMC	³ /4 h
Exercise: Power system analysis Practical use case examples of power system analysis with HVDC systems. Coffee break Faults in the DC link Response of half- and full-bridge MMC HVDC systems to DC link faults. Small signal analysis and power quality aspects HVDC VSC/MMC System small signal stability analysis. Power quality of HVDC VSC/MMC	³ /4 h

Time Schedule (Central European Time)

Full-Day	Time
First 90 minutes block	9:00
Coffee break	10:30
Second 90 minutes block	10:45
Q&A session	12:15
Lunch break	12:30
Third 90 minutes block	13:30
Coffee break	15:00
Fourth 90 minutes block	15:15
Q&A session	16:45
End of the training day	17:00

Half-Day	Time
First 90 minutes block	9:00
Coffee break	10:30
Second 90 minutes block	10:45
Q&A session	12:15
End of the training day	12:30

