Inhalt der Schulung

Einsteigerschulung: Lastfluss- und Kurzschlussberechnung

MODUL 1: Einführung in *PowerFactory* (Geschätzter Zeitaufwand: 1h)

Präsentation: PowerFactory-Benutzeroberfläche und Datenstruktur

Einführung in die Struktur und die grafische Benutzeroberfläche von *PowerFactory* inklusive Menüs, Zeichenwerkzeugen und dem Ausgabefenster. Nutzung des Daten-Managers für den Zugriff auf die Daten. Organisation von Nutzern und Projekten.

Übung: Ein Projekt importieren

Verstehen des Modellierungskonzepts und der grafischen Benutzeroberfläche in einem bestehenden Projekt.

MODUL 2: Netzaufbau (Geschätzter Zeitaufwand: 2,5h)

Präsentation:Netzaufbau

Einführung in die Datenanordnung innerhalb des Projekts: Netzdaten, Diagramme, Bibliothek. Konzept des Betriebsmitteltyps und der Netzelemente. Einführung in fortgeschrittene Möglichkeiten zur Modellierung von Schaltanlagen im Vergleich zur einfachen Sammelschienenmodellierung.

Übung: Erstellung eines Netzwerkmodells

Entwicklung eines Hochspannungsnetzes. Modellierung von Sammelschienen, Leitungen, Transformatoren, Generatoren und Lasten. Arbeiten mit der grafischen Benutzeroberfläche, dem Daten-Manager und dem Netzmodell-Manager.

Übung: Verwendung von Schaltanlagen

Erweiterung des Netzes durch den Ersatz von einfachen Sammelschienen durch Schaltanlagen. Wiederanbindung von Netzelementen. Verwendung von Schaltfeldern und detaillierten Grafiken.

>F2025

MODUL 3: Lastflussberechnung (Geschätzter Zeitaufwand: 3h)

Grundlagen der Lastflussberechnung

Theoretische Erklärung der Lastflussberechnung in *PowerFactory*. Erläuterung der Optionen und Einstellungen der Lastflussberechnung. Verschiedene Optionen zur Ergebnisdarstellung. Spannungs- und Blindleistungsregelung. Stationsregler und automatische Stufenschalter.

Übung: Lastflussberechnung

Durchführung einer Lastflussberechnung. Anzeige und Auswertung der berechneten Ergebnisse. Bewertung von Überlastungen und Spannungsbandverletzungen.

Übung: Lastflussberechnung mit Spannungsregelung

Simulation verschiedener Möglichkeiten zur Spannungsregelung. Analyse des Arbeitspunktes von Generatoren. Verwendung von Anlagenreglern und der automatischen Stufenregelung von Transformatoren.

MODUL 4: Netzerweiterung (Geschätzter Zeitaufwand: 1,5h)

Übung: Netzerweiterung

Vertiefung des Verständnisses für das Datenmodell durch die Eingabe von Betriebsmitteldaten einer dezentralen Erzeugungsanlage. Verwendung von Vorlagen.

MODUL 5: Kurzschlussberechnung (Geschätzter Zeitaufwand: 3,5h)

Grundlagen der Kurzschlussberechnung

Erklärung und Vergleich der verfügbaren Kurzschlussstromberechnungsarten. Vorstellung der Anwendungsgebiete der Kurzschlussstromberechnung für verschiedene Vorgänge wie Kabeldimensionierung, Anlagendimensionierung, etc. Verschiedene Arten der Sternpunktbehandlung.

Übung: Kurzschlussberechnung - Dimensionierung von Betriebsmitteln

Dreipolige Kurzschlussstromberechnung an verschiedenen Betriebsmitteln nach VDE0102. Verwendung der Ergebnisse um die thermische und mechanische Kurzschlussfestigkeit von Betriebsmitteln zu bewerten. Auslegung eines Leistungsschalters.

Übung: Kurzschlussberechnung - Vergleich von Berechnungsmethoden

Kurzschlussstromberechnung anhand der vollständigen Methode. Unterschiede zur Methode nach VDE0102. Übung zur dynamischen Spannungsstützung.

Übung: Kurzschlussberechnung - Sternpunktbehandlung

Durchführung von einpoligen Fehlern im Mittelspannungsnetz. Sternpunktbehandlung am Transformator und Untersuchung von verschiedenen Erdungskonzepten.

MODUL 6: Verbinden von Netzen (Geschätzter Zeitaufwand: 1h)

Übung: Verbinden von Netzen

Grafisches Trennen von Netzmodellen in mehrere Diagramme, z.B. nach Spannungsebene oder Netzregionen. Topologische und grafische Verbindung von Netzteilen von verschiedenen Netzen oder Teilsystemen.

MODUL 7: Netzplanung und Netzbetrieb (Geschätzter Zeitaufwand: 3,5h)

Netz- und Betriebsplanung

Datenmanagement mit Netzen, Varianten und Ausbaustufen für die Netzausbauplanung. Verwendung von Betriebsfällen zur Berücksichtigung verschiedener Betriebsbedingungen und Verwendung von Berechnungsfällen zur Analyse des Netzes.

Übung: Varianten und Ausbaustufen

Netzausbauplanung mit Varianten und Ausbaustufen auf der Basis des Grundnetzes. Nutzung von zeitabhängigen Netzveränderungen in Ausbaustufen. Vergleich von Netzvarianten.

Übung: Betriebsplanung

Definition von Betriebsfällen in *PowerFactory* zur Abbildung verschiedener Last- und Erzeugerszenarien und Schaltzustände im Netz.

Übung: Netzanalyse

Analyse des Netzes mit Hilfe der definierten Betriebsfälle und der zuvor erstellten Netzausbauplanung. Verwendung von Berechnungsfällen zur Kombination von aktiven Betriebsfällen, Varianten und Netzen zur einfachen Analyse verschiedener Szenarien.

MODUL 8: Weitere Hinweise (Geschätzter Zeitaufwand: 0,5h)

Zusätzliche Hinweise

Zusätzliche Hinweise zum Basis Paket. Tipps und Tricks zum Arbeiten mit *PowerFactory*.

